How Data Mining Works: A Guide (2024)

Data mining is the process of understanding data through cleaning raw data, finding patterns, creating models, and testing those models. It includes statistics, machine learning, and database systems. Data mining often includes multiple data projects, so it’s easy to confuse it with analytics, data governance, and other data processes. This guide will define data mining, share its benefits and challenges, and review how data mining works. Data mining has a long history. It emerged with computing in the 1960s through the 1980s. Historically, data mining was an intensive manual coding process — and it still involves coding ability and knowledgeable specialists to clean, process, and interpret data mining results today. Data specialists need statistical knowledge and some programming language knowledge to complete data mining techniques accurately. For instance, here are some examples of how companies have used R to answer their data questions. However, some of the manual processes are now able to be automated with repeatable flows, machine learning (ML), and artificial intelligence (AI) systems.

Data mining isn’t precisely data analytics

As discussed, data mining may be confused with other data projects. The data mining process includes projects such as data cleaning and exploratory analysis, but it is not just those practices. Data mining specialists clean and prepare the data, create models, test those models against hypotheses, and publish those models for analytics or business intelligence projects. In other words, analytics and data cleaning are parts of data mining, but they are only parts of the whole.

Benefits of data mining

Data mining is most effective when deployed strategically to serve a business goal, answer business or research questions, or be a part of a solution to a problem. Data mining assists with making accurate predictions, recognizing patterns and outliers, and often informs forecasting. Further, data mining helps organizations identify gaps and errors in processes, like bottlenecks in supply chains or improper data entry.

How data mining works

The first step in data mining is almost always data collection. Today’s organizations can collect records, logs, website visitors’ data, application data, sales data, and more every day. Collecting and mapping data is a good first step in understanding the limits of what can be done with and asked of the data in question. The Cross-Industry Standard Process for Data Mining (CRISP-DM) is an excellent guideline for starting the data mining process. This standard was created decades ago and is still a popular paradigm for organizations that are just starting.

The 6 CRISP-DM phases

The CRISP-DM comprises a six-phase workflow. It was designed to be flexible; data teams are allowed and encouraged to move back to a previous stage if needed. The model also provides opportunities for software platforms that help perform or augment some of these tasks.

1. Business understanding

Comprehensive data mining projects start by first identifying project objectives and scope. The business stakeholders will ask a question or state a problem that data mining can answer or solve.

2. Data understanding

Once the business problem is understood, it is time to collect the data relevant to the question and get a feel for the data set. This data often comes from multiple sources, including structured data and unstructured data. This stage may include some exploratory analysis to uncover some preliminary patterns. At the end of this phase, the data mining team has selected the subset of data for analysis and modeling.

3. Data preparation

This phase begins with more intensive work. Data preparation involves preparing the final data set, which includes all the relevant data needed to answer the business question. Stakeholders will identify the dimensions and variables to explore and prepare the final data set for model creation.

4. Modeling

In this phase, you’ll select the appropriate modeling techniques for the given data. These techniques can include clustering, predictive models, classification, estimation, or a combination. Front Health used statistical modeling and predictive analytics to decide whether to expand healthcare programs to other populations. You may have to return to the data preparation phase if you select a modeling technique that requires selecting other variables or preparing some different sources.

5. Evaluation

After creating the models, you need to test them and measure their success at answering the question identified in the first phase. The model may answer facets of things not accounted for, and you may need to edit the model or edit the question. This phase is designed to allow you to look at the progress so far and ensure it’s on the right track for meeting the business goals. If it’s not, there might be a need to move backwards to previous steps before a project is ready for the deployment phase.

6. Deployment

Finally, once the model is accurate and reliable, it is time to deploy it in the real world. The deployment can take place within the organization, be shared with customers, or be used to generate a report for stakeholders to prove its reliability. The work doesn’t end when the last line of code is complete; deployment requires careful thought, a roll-out plan, and a way to make sure the right people are appropriately informed. The data mining team is responsible for the audience’s understanding of the project.

Types of data mining techniques

Data mining includes multiple techniques for answering the business question or helping solve a problem. This section is just an introduction to two data mining techniques and is not currently comprehensive.

Classification

The most common technique is classification. To do this, identify a target variable and then divide that variable into appropriate level of detail categories. For example, the variable ‘occupation level’ might be split into ‘entry-level’, ‘associate’, and ‘senior’. With other fields such as age and education level, you can train your data model to predict what occupation level a person is more likely to have. You may add an entry for a recent 22-year-old graduate, and the data model could automatically classify that person in an ‘entry-level’ position. Insurance or financial institutions such as PEMCO Insurance used classification to train their algorithms to flag fraud and to monitor claims.

Clustering

Clustering is another common technique, grouping records, observations, or cases by similarity. There won’t be a target variable like in classification. Instead, clustering just means separating the data set into subgroups. This method can include grouping records of users by geographic area or age group. Typically, clustering the data into subgroups is preparation for analysis. The subgroups become inputs for a different technique.

How to avoid data mining mistakes

Data mining is a powerful and useful process for exploring data to predict patterns or outcomes. Unfortunately, it’s easy to do data mining incorrectly. You shouldn’t use data mining if your leaders do not have analytical or statistical knowledge to oversee the software. Inaccurate mining techniques can create incorrect models, resulting in inaccuracies. Further, if the team is using personally identifiable information in data mining activities, they must ensure they are following compliance regulations and governance standards.

Who does data mining in an organization?

Data mining specialization is most often a function or capability of data scientist or data analyst roles. Data mining tends to require large projects with far-reaching, cross-functional project management, and it can ladder up to analytics or business analysis teams. Some organizations look to data mining specialists to build machine learning or artificial intelligence scripts, so proficiency and knowledge of these is often a core competency. Within research organizations or in academia, data mining specialists are likely to be called data scientists or analysts and they can exist either as a part of a single lab or as a part of a service center or center of excellence team for many labs.

Data mining and R

Our customers, partners, and researchers have used data mining and R to innovate and maximize productivity. For example, Wells Fargo needed to clean up user data from 70 million customers to gain clear insights. Their data team was able to use Tableau and R to maximize their computing power and complete major projects much faster than with traditional tools. Modern platforms empower users to get deep into data mining without overwhelming data teams. Learn more about using R in your data mining projects.

How Data Mining Works: A Guide (2024)

FAQs

How Data Mining Works: A Guide? ›

The data mining process includes projects such as data cleaning and exploratory analysis, but it is not just those practices. Data mining specialists clean and prepare the data, create models, test those models against hypotheses, and publish those models for analytics or business intelligence projects.

How does data mining process work? ›

The data mining process includes projects such as data cleaning and exploratory analysis, but it is not just those practices. Data mining specialists clean and prepare the data, create models, test those models against hypotheses, and publish those models for analytics or business intelligence projects.

What is data mining a beginners guide? ›

Data mining is most commonly defined as the process of using computers and automation to search large sets of data for patterns and trends, turning those findings into business insights and predictions.

What are the 6 steps of data mining? ›

Data mining is as much analytical process as it is specific algorithms and models. Like the CIA Intelligence Process, the CRISP-DM process model has been broken down into six steps: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.

What are the 7 steps in data mining? ›

There are seven steps in the data mining process: Data Cleaning, Data Integration, Data Reduction, Data Transformation, Data Mining, Pattern, Evaluation, Knowledge Representation. What is data mining?

What are 3 data mining techniques? ›

In recent data mining projects, various major data mining techniques have been developed and used, including association, classification, clustering, prediction, sequential patterns, and regression.

What are the 3 types of data mining? ›

Types of Data Mining
  • Predictive Data Mining. ...
  • Descriptive Data Mining. ...
  • CLASSIFICATION ANALYSIS. ...
  • REGRESSION ANALYSIS. ...
  • Time Serious Analysis. ...
  • Prediction Analysis. ...
  • Clustering Analysis. ...
  • SUMMARIZATION ANALYSIS.

What is the purpose of data mining? ›

Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs, improve customer relationships, reduce risks and more.

What is data mining life cycle? ›

Prerequisite – Data Mining Traditional Data Mining Life Cycle: The data life cycle is the arrangement of stages that a specific unit of information goes through from its starting era or capture to its possible documented and/or cancellation at the conclusion of its valuable life.

Is data mining illegal in the US? ›

While data mining itself is not illegal, there are laws governing data mining practices that involve the data of individuals. Certain types of data like weather data can be mined without ethical or legal considerations. Other data like health information or consumer behavior must be mined with caution.

What is a data mining algorithm? ›

An algorithm in data mining (or machine learning) is a set of heuristics and calculations that creates a model from data. To create a model, the algorithm first analyzes the data you provide, looking for specific types of patterns or trends.

How many techniques are used in data mining? ›

16 Data Mining Techniques: The Complete List.

How do I start data mining for Cryptocurrency? ›

Once you're ready to start mining crypto, here are the steps to follow.
  1. Choose a cryptocurrency to mine. There are many cryptocurrencies you can mine, but not all of them use this method to verify transactions. ...
  2. Buy your mining equipment. ...
  3. Set up a crypto wallet. ...
  4. Configure your mining device. ...
  5. Join a mining pool.

What is data mining for kids? ›

Data mining is a term from computer science. Sometimes it is also called knowledge discovery in databases (KDD). Data mining is about finding new information in a lot of data. The information obtained from data mining is hopefully both new and useful. In many cases, data is stored so it can be used later.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kimberely Baumbach CPA

Last Updated:

Views: 5561

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Kimberely Baumbach CPA

Birthday: 1996-01-14

Address: 8381 Boyce Course, Imeldachester, ND 74681

Phone: +3571286597580

Job: Product Banking Analyst

Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.